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Recent advances in neuroimaging methods have allowed researchers to obtain 

various structural and functional parameters from an individual in a whole-brain, voxel-
wise manner. To conduct group level analyses utilizing such data, a one-to-one 
correspondence between voxels2 across individuals must be identified. The most common 
approach to this problem is registering individual brains to a standard template. Many 
sophisticated spatial registration methods are available for this purpose. However, when 
individual variability of the brains in the study population is substantially increased by 
injury or disease, achieving a satisfactory alignment across individual brains using the 
currently available registration protocols becomes a challenging task. Resorting to 
manual region-of-interest (ROI) drawing or using affine-only transformation may not be 
viable options because precise spatial normalization is a prerequisite for various 
powerful voxel-based techniques such as voxel-based morphometry (VBM; Ashburner & 
Friston, 2000), tensor-based (or deformation-based) morphometry (TBM or DBM; 
Ashburner et al., 1998; Gaser, Volz, Kiebel, Riehemann, & Sauer, 1999; Thompson, 
Woods, Mega, & Toga, 2000), voxel-based lesion-symptom mapping (VLSM; Rorden & 
Karnath, 2004), and coordinate-based voxel-wise meta-analyses (Fox, Laird, & Lancaster, 
2005).  
 

 
 
 
 

                                                 

Figure 1. High-resolution anatomical scans from two survivors of TBI are used 
in the current study. (A) A brain with prominent diffuse injury. (B) A brain with 
large bilateral prefrontal focal lesions in addition to atrophy.

1 We thank Edwardo Europa, BA and John Slattery, BA for their help in making figures, composing the 
glossary, and English editing. 
2 Some terms related to image registration and mathematics are explained in the glossary at the end of this 
document. When such terms occur for the first time, they are italicized. 



The purpose of the present document is to briefly review available strategies for 
spatially normalizing lesioned brains to a standard template and to conduct case 
experiments on representative brains with severe traumatic brain injury (TBI) in order to 
qualitatively illustrate the relative effectiveness of each method. We chose the brains of 
TBI survivors for our case experiments because they show large and variable lesions. 
Due to the diverse etiology of TBI and complicated nature of injury progression, the 
brain of a TBI survivor frequently demonstrates both diffuse and focal brain lesions 
(Figure 1). These two types of injury patterns pose unique challenges for spatial 
normalization and require different approaches. 
 
1. Normalizing brains with diffuse injury 
  

Diffuse injury is characterized by widespread brain parenchymal atrophy 
accompanied by ventricular enlargement. Due to this ‘non-linear’ nature of diffuse injury 
(i.e., shrinkage in one part of the brain and enlargement in another part), a substantial 
amount of non-linear transformation is required to compensate the mismatch between the 
injured brain and the standard template. The more severe the atrophy, the larger degree of 
image transformation is necessitated. Until recently, most neuroimaging studies of 
clinical conditions with diffuse brain atrophy (e.g., TBI and neurodegenerative diseases) 
have used conventional non-linear normalization protocols (affine plus non-linear 
registration) originating from Statistical Parametric Mapping (SPM; Friston, 1995) or 
Automated Image Registration (AIR; Woods, Grafton, Holmes, Cherry, & Mazziotta, 
1998; Woods, Grafton, Watson, Sicotte, & Mazziotta, 1998) software. In these 
implementations, the normalization process begins with affine-only transformations that 
involve only translating, rotating, scaling, and shearing. Then the source image is further 
matched to the template by non-linear transformation models, such as the linear 
combination of discrete cosine basis functions (in SPM) or polynomials (in AIR). An 
important limitation of these conventional protocols, however, is that they cannot fully 
normalize the atrophied brain due to their small deformation assumption (for 
mathematical introductions on the small and large deformation frameworks, see  
Ashburner, 2007; Miller et al., 1997). Essentially, the small deformation framework 
assumes that image matching can be done successfully with a small degree of image 
transformation. As a result, when large deformations are required to match the source 
image to the target image, a distortion of the original image or even a breakage in 
topology can occur (e.g., a tear or overlap in the source image). In contrast, the large 
deformation framework (e.g., Avants & Gee, 2004; Beg, Miller, Trouvé;, & Younes, 
2005), while allowing large deformation, preserves image topology. In other words, 
while structures in the source image go through a large degree of transformation, 
structures that are neighbors are also neighbors after spatial normalization. Although not 
yet widely used, there has been a recent emergence of spatial normalization applications 
using large deformation, including the high-dimensional warping Diffeomorphic 
Anatomical Registration Through Exponentiated Lie algebra (DARTEL) toolbox 
(Ashburner, 2007) in SPM5, the FMRIB’s Linear Registration Tool (FLIRT) in FSL, and 
Symmetric Normalization (SyN) in Advanced Normalization Tools (ANTS). These 
algorithms use a diffeomorphism (a differentiable map with differentiable inverse) to 
implement a large deformation framework. Here, we focus on SyN as a representative 



method of the large deformation framework because a recent large-scale evaluation study 
has demonstrated its robustness compared to other state-of-the-art algorithms (Klein et al., 
submitted for publication).  
 

 
  
 
 
 
  

Figure 2. Spatial normalization results for the brain with diffuse pathology (see 
text for details). Unified = Unified Segmentation. HDW = High-dimensional 
Warping. SyN = Symmetric Normalization 

To illustrate the effectiveness of a large deformation normalization protocol in 
dealing with diffuse injury, we normalized our case brain (Figure 1, A) utilizing SyN. For 
comparison purposes, we also processed the same brain with four more protocols: affine-



only transformation, SPM2 non-linear warping, SPM5 unified segmentation protocol, and 
SPM5 high-dimensional warping algorithm. These protocols implemented in SPM are 
utilized because SPM is the most widely used image registration package among clinical 
researchers. All SPM normalizations were conducted with default settings. The results 
are illustrated in Figure 2. At the top row, the original brain without any transformation is 
presented. At the bottom row, a customized template brain to which the original brain 
was registered is shown. As expected, affine-only transformation did not perform well in 
terms of the similarity judged by visual inspection (e.g., the comparison of the size and 
shape of the ventricles between the normalized brain and the template). The two low-
dimensional algorithms, SPM2 and SPM5 Unified, have performed better but not as well 
as the two high dimension algorithms, SPM5 HDW and SyN. It seems that SyN yields 
better performance between the two latter protocols (e.g., in terms of matching both the 
ventricle size and shape to the size and shape of the ventricles in the template). These 
results suggest that the brains characterized with severe diffuse injury can best be 
normalized by large deformation algorithms using diffeomorphisms. 
 
2. Normalizing brains with focal injury 
  

Focal abnormalities in the injured brains pose a difficult challenge for the 
nonlinear models. This is due to the fact that most of the spatial registration algorithms 
try to match the voxel intensities across the whole brain through minimizing the cost 
function, a single output measuring the mismatch between two images. Since a focal 
lesion with abnormal intensity values contributes disproportionately to the cost function, 
it is possible that the algorithm attempts further transformation to minimize the cost 
function even in cases where optimal matching for other healthy areas is achieved. This 
starts to cause a distortion of images. The five most widely used ways to deal with this 
problem are described below.  

First, some researchers have conducted only affine transformations that do not 
introduce such distortion. In an affine-only transformation, the source image is matched 
to the template using only a linear transformation involving rotation, translation, scale, 
and shear. Since detailed non-linear warping is not being performed by the algorithm, 
distortions are not introduced in and around the lesion area. However, this gain is offset 
by the cost of poorer matching of detailed structure between the source and template 
images globally. 

A second method is manually applying a lesion on the standard template at the 
location corresponding to its location in the source image. This has the effect of reducing 
the difference between the source and template image attributable to the lesion that is 
captured in the cost function. However, the reasoning for using this approach is 
somewhat circular. The location of the lesion in the template space is what the algorithm 
is intending to reveal. However, the user must determine the location of the lesion in the 
template prior to running the algorithm. 

A third method of dealing with focal lesions is called enantiomorphic 
normalization (Nachev, Coulthard, Jager, Kennard, & Husain, 2008). It is a new method 
which essentially involves replacing the lesion volume with the homologous volume 
from the contralateral hemisphere of the brain and then estimating the normalization 
parameters from this “artificial” brain. The resulting parameters can then be applied to 



the original brain. However, this method has many limitations. For example, the lesion 
must be unilateral.  In addition, it makes an assumption that the brain is symmetric and 
there is clear evidence for brain asymmetry at least in some areas. Furthermore, large 
unilateral lesions frequently distort across the midline, violating the symmetry 
assumption.  

A fourth method is called a ‘unified segmentation’ approach. Introduced with 
SPM5, this approach basically combines segmentation, bias correction, and spatial 
normalization in a single unified model (Ashburner & Friston, 2005). Since parameter 
estimation alternates these three processes, spatial normalization of lesions can benefit 
from segmentation and bias correction steps. For example, multiple Gaussian models for 
tissue segmentation can help to distinguish lesioned and healthy areas. Bias correction, 
which includes an inhomogeneity field, also can help isolating a lesioned area. The 
unified segmentation approach is conceptually attractive because it is fully automated. 
However, it is implemented using a small deformation model, limiting its use for 
normalizing brains with diffuse pathology. 
 Finally, the most widely used method of dealing with focally lesioned brains to 
date is cost function masking (CFM; Brett, Leff, Rorden, & Ashburner, 2001). The key 
idea in cost function masking is that the voxels representing a lesion are not used in the 
calculation of the difference between two images, the cost function. Brett et al. (2001) 
found that cost function masking significantly improved non-linear normalization results, 
outperforming affine-only transformation. However, cost function masking has 
limitations when the lesion is large or bilateral. In addition, later work has not clearly 
shown a difference between the results of affine only normalization and those of a non-
linear algorithm using cost function masking (Crinion et al., 2007). Recently, we 
developed a method that can be combined with SyN to deal with focally lesioned brains. 
It is tentatively called SyN with constrained cost function masking (CCFM). In essence, 
the method formulates brain matching in the presence of the lesion as a "missing data" 
problem. Because diffeomorphic mappings are defined by the velocity field, this 
formulation leads to unknown velocity field parameters within the lesioned region. The 
"missing" velocity field parameters are estimated by a smooth inference from the velocity 
field parameters outside of the lesion, in particular, near the lesion boundaries. Thus, the 
lesioned regions deform in the most probable way, given the deformation of the healthier 
surrounding tissue. This approach is related to, but markedly more ‘constrained’ than the 
original cost function masking approach; the original technique does not particularly 
specify the nature of the deformation within the lesion. The advantage of this method 
compared to the original implementation of cost function masking is that our approach 
performs well in cases of bilateral and/or large lesions. Figure 3 shows essential steps in 
SyN with constrained cost-function masking. The original brain, which is rigidly 
transformed (leftmost), is labeled as lesion (green) and healthy (red) areas. Then, the 
lesion area is ‘constrained’ while healthy areas go through a large deformation 
normalization process. The Jacobian map (middle) shows the degree of deformation. The 
normalized case brain (second from right) and the template (rightmost) are also shown. 
 
 
 
 
 



 
 
 
 

 
 
 Figure 3. Steps for constrained cost-function masking (see text for detailed 

description).   
 
 To illustrate the effectiveness of our CCFM approach combined with SyN in 
dealing with focal (and diffuse) injury, we spatially normalized our case brain (Figure 1, 
B) utilizing different protocols. Among the protocols included are affine-only 
transformation, SPM2 non-linear warping with and without CFM, SPM5 unified 
segmentation protocol, and SyN with and without CCFM. The results are illustrated in 
Figure 4. At the top row, the original brain without any transformation is presented. At 
the bottom row, a customized template brain to which the original brain was registered is 
shown. As expected, affine-only transformation did not perform well in terms of the 
similarity judged by visual inspection. The cost function masking in each algorithm 
(SPM2, SPM5 Unified, and SyN) seems to have worked reasonably well without causing 
any lesion-related distortion. However, the two low-dimensional algorithms, SPM2 and 
SPM5 Unified, have not performed as well as the large deformation algorithm, SyN, in 
terms of matching the healthy regions. These results suggest that the brains characterized 
with severe focal and diffuse injury may best be normalized by large deformation 
algorithms in combination with constrained cost-function masking. 
 
 
 
 
 
 



 
 
 
 
 
 

Figure 4. Spatial normalization results for the focal lesion brain with or without cost 
function masking. CFM = Cost function masking. CCFM = Constrained cost-
function masking. 

 
 
 



3. Concluding remarks  
 

In this document, we have presented qualitative evidence on the performance of 
various normalization protocols. However, visually inspecting the similarities between 
the normalized source images and the template is not sufficient for evaluating the 
capabilities of a normalization protocol. Quantitative performance evaluation is necessary. 
Existing evaluation studies suggest that large deformation methods should be used for 
normalizing brains characterized by diffuse injury. Focal injury, frequently co-existing 
with diffuse injury in the case of TBI, has been found to be best dealt with by cost 
function masking. We have introduced a variation of the original cost function masking 
by directly constraining the deformation in the masked lesion area. Our method, called 
‘constrained’ cost-function masking, is expected to improve the performance of 
normalization, especially in the presence of large and/or bilateral focal lesions. Finally, a 
fundamental limitation of the spatial normalization procedure should be acknowledged. 
That is, because of individual variations in functional localization, spatial normalization 
in terms of anatomical features does not guarantee the alignment of functionally 
homologous areas across subjects. Thus, caution should be exercised when anatomical 
normalization is applied to functional data.  
 
4. Glossary3  
 
Affine Transformation: A linear transformation (scaling, shearing, rotation) followed by a 

translation that preserves collinearity and ratios of distances. Such changes are 
imposed onto the whole brain image rather than certain portions. 

Bias correction: The process of correcting intensity non-uniformities from magnetic 
resonance images. 

Cost function: A mathematical measure of mismatch between two images. For example, 
SPM uses the sum of the squared differences between the voxel intensity values.  

Deformation: Image transformation. 
Diffeomorphism: A differentiable map with a differentiable inverse. A diffeomorphic 

transformation is a smooth (invertible and differentiable) transformation that 
preserves structure (topology) maps.  

Field: An algebraic structure in which mathematical operations are performed. 
Image registration: The alignment of one image to another image. 
Inhomogeneity field: A spatial distribution of values across an image describing the 

deviation between original intensity values from corrected values. 
Linear (transformation): One or a combination of the following: moving an image about a 

fixed point in a circular motion (e.g. rotation), enlarging/diminishing an image (e.g. 
scaling), stretching an image with the same magnitude and direction on both sides of 
a defined axis (e.g. shearing). 

Morphometry: The evaluation of the variation and change in the size and shape of (parts 
of) the brain. 

                                                 
3 In defining the terms, we tried to avoid replacing one technical term with another. This sometimes 
sacrificed the rigor of the definition. 



Non-linear (transformation): Transformations not involving rotations, scaling or shearing. 
Typically, these functions are characterized by polynomials or are trigonometric 
functions (i.e. sine and cosine).  

Segmentation: The classification of different tissues (i.e. white matter, grey matter, CSF) 
in the brain. 

Source image: The original brain image of the subject prior to registration. 
Spatial normalization: The process of mapping voxels from a subject brain onto specific 

locations of a template brain. Essentially, the obtained MRI images are transformed 
to fit the template. The purpose of normalization is to reduce brain structure 
variability between the various subjects.   

Target image: The template brain image or what the source image will be aligned to.  
Topology: A collection of points in space whose relative positioning remains unchanged 

by deformation transformations. 
Transformation: A calculable function that alters the relative positioning and size of 

points in an image. 
Velocity field: A summary of values spatially distributed across an image describing the 

speed and direction of moving fluid in particular regions. 
Voxel: A 3-D element that serves as a unit of raw neuroimaging data collection. 
 
6. References 
 
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 

38(1), 95-113. 
Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry--the methods. 

Neuroimage, 11(6 Pt 1), 805-821. 
Ashburner, J., & Friston, K. J. (2005). Unified segmentation. Neuroimage, 26(3), 839-

851. 
Ashburner, J., Hutton, C., Frackowiak, R., Johnsrude, I., Price, C., & Friston, K. (1998). 

Identifying global anatomical differences: deformation-based morphometry. Hum 
Brain Mapp, 6(5-6), 348-357. 

Avants, B., & Gee, J. C. (2004). Geodesic estimation for large deformation anatomical 
shape averaging and interpolation. Neuroimage, 23 Suppl 1, S139-150. 

Beg, M. F., Miller, M. I., Trouvé;, A., & Younes, L. (2005). Computing Large 
Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms. Int. J. 
Comput. Vision, 61(2), 139-157. 

Brett, M., Leff, A. P., Rorden, C., & Ashburner, J. (2001). Spatial normalization of brain 
images with focal lesions using cost function masking. Neuroimage, 14(2), 486-
500. 

Crinion, J., Ashburner, J., Leff, A., Brett, M., Price, C., & Friston, K. (2007). Spatial 
normalization of lesioned brains: performance evaluation and impact on fMRI 
analyses. Neuroimage, 37(3), 866-875. 

Fox, P. T., Laird, A. R., & Lancaster, J. L. (2005). Coordinate-based voxel-wise meta-
analysis: dividends of spatial normalization. Report of a virtual workshop. Hum 
Brain Mapp, 25(1), 1-5. 

Friston, K. J. (1995). Commentary and opinion: II. Statistical parametric mapping: 
ontology and current issues. J Cereb Blood Flow Metab, 15(3), 361-370. 



Gaser, C., Volz, H. P., Kiebel, S., Riehemann, S., & Sauer, H. (1999). Detecting 
structural changes in whole brain based on nonlinear deformations-application to 
schizophrenia research. Neuroimage, 10(2), 107-113. 

Klein, A., Anderson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M., et al. 
(submitted for publication). Evaluation of 14 nonlinear deformation algorithms 
applied to human brain MRI registration. 

Miller, M., Banerjee, A., Christensen, G., Joshi, S., Khaneja, N., Grenander, U., et al. 
(1997). Statistical methods in computational anatomy. Stat Methods Med Res, 
6(3), 267-299. 

Nachev, P., Coulthard, E., Jager, H. R., Kennard, C., & Husain, M. (2008). 
Enantiomorphic normalization of focally lesioned brains. Neuroimage, 39(3), 
1215-1226. 

Rorden, C., & Karnath, H. O. (2004). Using human brain lesions to infer function: a relic 
from a past era in the fMRI age? Nat Rev Neurosci, 5(10), 813-819. 

Thompson, P. M., Woods, R. P., Mega, M. S., & Toga, A. W. (2000). 
Mathematical/computational challenges in creating deformable and probabilistic 
atlases of the human brain. Hum Brain Mapp, 9(2), 81-92. 

Woods, R. P., Grafton, S. T., Holmes, C. J., Cherry, S. R., & Mazziotta, J. C. (1998). 
Automated image registration: I. General methods and intrasubject, intramodality 
validation. J Comput Assist Tomogr, 22(1), 139-152. 

Woods, R. P., Grafton, S. T., Watson, J. D., Sicotte, N. L., & Mazziotta, J. C. (1998). 
Automated image registration: II. Intersubject validation of linear and nonlinear 
models. J Comput Assist Tomogr, 22(1), 153-165. 

 



Acknowledgement 
 
"Supported in part by Grant # H133G050219 from the National Institute on Disability 
and Rehabilitation Research, United States Department of Education (J. Whyte, Principal 
Investigator)" 
 


