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Introduction

The use of in-vivo imaging methods to study connectivity in the brain has grown 
dramatically over the past several years.  While a large part of this growth is due to the 
availability of diffusion tensor imaging (DTI), methods for examining connectivity using widely 
available BOLD contrast data have also been growing.  The umbrella term for the latter, 
“functional connectivity,” was defined by Friston et al. (1993) as “temporal correlation between 
spatially remote neurophysiological events.”  This definition captures the essentially 
correlative nature of these methods – regions are considered functionally connected if their 
activity is in some way correlated, regardless of the mechanism underlying the correlation.  As 
contrasted with effective connectivity (“the influence that one neural system exerts over 
another either directly or indirectly”), functional connectivity doesn't necessarily imply a 
physical pathway, and potentially includes patterns of connectivity that are entirely mediated 
by the common influence of some external event on distant neural areas.

Much of the study of functional connectivity (FC) is carried out by examining inter-
regional correlations in resting BOLD data, an approach that is traced to a study by Biswal et 
al. (1995; see Rogers et al., 2008 for a brief note on earlier related methods), who observed 
correlations between activity in left and right somatosensory cortex during resting BOLD. 
Temporal correlations in resting data are of special interest because they are not easily 
explained by externally imposed task demands (although they may be influenced by 
endogenously driven behavior at rest).  At the same time, a growing literature on neural 
activity during the kinds of passive experimental conditions ordinarily used as control or rest 
conditions during fMRI suggests that resting BOLD is more than just the absence of 
cognitively evoked activity.  By contrast, connectivity measures from data collected during 
task performance risk discovering trivial associations of little novel interest – there is an 
obvious reason why regions in the left and right motor cortex should be correlated during 
bimanual finger tapping, and a functional connectivity analysis sheds no new light on these 
processes.

A major practical advantage of connectivity studies carried out in resting data is that 
the same data may be used repeatedly.  At this point, a great deal of resting BOLD data is 
available either publicly or through local repositories, and many questions can be addressed 
without the collection of new data.  Further, Fair et al. (2006) have demonstrated that rest 
periods from blocked-design BOLD studies yield similar results to what can be obtained from 
simple resting BOLD data, which opens up the possibility of drawing on an even larger store 
of existing data.

Understanding spatial patterns of intercorrelation may be important for another reason. 
Fox et al. (2006) have shown that some of the coherent signal in resting BOLD contributes 
roughly linearly to task-evoked BOLD.  In this way, better understanding of the task-
independent component of the signal can lead to markedly better sensitivity to detect task-
evoked activation.

The purpose of this article is to convey the essential details of the most common 



approaches to studying functional connectivity in BOLD data, mostly resting BOLD.  I first 
describe typical processing steps involved in these analyses, then describe a few variants of 
the basic method, and finally describe available software tools for carrying out these 
analyses.

Inter-region time series correlations

The most straightforward approach to measuring functional connectivity in resting 
BOLD data is to examine the correlations between time series data acquired from different 
voxels or regions.  Typically, the signal is first extracted from some seed region or voxel, 
identified either functionally (it was activated in a separate dataset) or anatomically.  A 
correlation map may then be constructed by calculating the correlation between that seed 
signal and the signal from each other voxel in the brain.  Here I describe some of the design 
and analysis considerations specific to functional connectivity analysis.

Data collection.  Data may be collected with typical BOLD acquisition parameters.  The 
amount of data required depends on many factors, including the field strength of the scanner, 
the other details of the scanning protocol and hardware, the nature of the paradigm if any, the 
nature of the subject population, and the planned analyses.  Previous studies provide some 
points of reference, with typical studies of resting BOLD at 1.5T including roughly 20-30 
minutes of scanning.  This appears to be somewhat arbitrary – i.e., adequate solely because 
it has turned up meaningful results in the past.  The basis for a proper power analysis is 
unclear, but it would probably depend on some a priori reasoning to identify a minimum inter-
regional correlation coefficient of interest.

Preprocessing.  Preprocessing of BOLD data for resting connectivity studies is similar 
to that for functional studies, with some additional considerations.  Here I describe the 
relevant steps.

Correction for slice timing.  If a whole brain volume is acquired over 3 seconds, then 
nearly 3 seconds may separate the first and last slices acquired.  Naïvely calculating 
correlations between voxels is therefore likely to suffer from a temporal offset between 
the voxels.  Although restricting the analysis to low frequencies (see “frequency domain 
filtering” below) minimizes the effects of this error, FC studies (and most fMRI studies) 
typically interpolate the data to correct for this temporal offset.
Intensity correction.  Due to the order of acquisition, intensity scaling may differ 
between slices.  Because FC methods draw direct comparisons between slices, 
correction of inter-slice intensity differences may be more important than it would be for 
BOLD studies, where each voxel is treated independently.  Although simple scaling 
and offset differences between voxels would not affect correlations, these intensity 
differences can have an undesired effect of weighting the contributions of different 
slices when smoothing or spatially transforming images.
There may also be global intensity differences between BOLD runs where more than 
one run per subject is used to calculate the correlation.  Scaling (multiplicative) 
differences may be factored out by scaling each run to a global mean.  Offset (additive) 
differences can be factored out in the model stage of activation studies, or by 
subtracting off mean differences if a regression isn't otherwise needed.
Rigid realignment.  Rigid realignment of the brain is required to correct for head 
movement during the scan.  Rigid registration allows a subset of possible affine 
transforms: translations in and rotations around all three axes.  Head movement is a 
generally worrisome problem for all BOLD studies, and subjects with excessive head 
movement are typically excluded.  What qualifies as “excessive” is an open question, 



but it is presumed that the same heuristic guidelines used for fMRI may be used for FC 
studies.
Spatial normalization.  For multi-subject studies, spatial normalization (aka “brain 
warping” or “nonlinear registration”) to a common template is required to align 
corresponding structures (as well as possible).  When that common template is in a 
standard space (typically MNI space, see Collins, 1994), labellings from atlases in that 
space may be used to query specific anatomical regions.  Specifically, there are 
several atlases in MNI space that assign neuroanatomical names to each voxel, and at 
least one map of Brodmann's areas.
Resampling.  Both rigid realignment and spatial normalization entail first calculating a 
spatial transformation of each volume, a coordinate transformation that specifies, for 
each voxel in the new volume, the location in the old volume from which to take the 
signal value.  This location is generally between voxels, and calculating values for 
between-voxel locations entails an interpolation step that loses some of the information 
from the original image.  To avoid compounding this effect by first realigning and then 
normalizing, the two transformations may be combined into a single compound 
transformation, and the image resampled once.  Note that although it is common to 
create resampled data at the original resolution (e.g., 3x3x3 mm), any resolution might 
be used.
Frequency domain filtering.  Removing frequency components from the time series 
signal is an effective way to remove noise.  Since Biswal (1995), it has been common 
in FC studies to remove frequencies higher than 0.08Hz (period of 12.5s).  Higher 
frequencies than this are unlikely to contain much if any information about neural 
activity, given the slowness of the hemodynamic response measured by BOLD 
(Aguirre et al., 1997).  Fox et al. (2005; 2006) also remove frequencies lower than 
0.009Hz (period of 111s).  Cordes et al. (2001) have demonstrated explicitly that lower 
frequencies underlie functional connectivity.  Note that frequency domain filtering 
reduces the effective degrees of freedom in the data.
Spatial smoothing.  Spatial smoothing almost invariably means smoothing with a 3D 
Gaussian kernel.  At a spatial scale determined by the size of the Gaussian kernel, it 
improves the signal-to-noise ratio by averaging across voxels that may have some 
independent noise, but similar signals of interest.  The cost of smoothing is a loss of 
power to detect effects that depend on more spatially localized signals, since these will 
not benefit from spatial averaging.  Typical smoothing kernels for FC studies are 6-9 
mm FWHM.
Regressing out patterns of no interest.  Various noise signals can be removed from 
each time series in the brain by regression.  This is particularly important for functional 
connectivity studies in order to remove degenerate sources of inter-region correlations. 
Fox et al. (2005; 2006) include the six parameters estimating head movement, global 
signal from the entire brain, signal drawn from a region in the ventricles, and signal 
drawn from a region in white matter.  Fox et al. (2005) have also suggested an 
advantage to removing the first derivative of the global, ventricle, and white matter 
signals.  The ventricle and white matter regions are typically drawn by hand, although 
with high-quality normalization, the regions can be done just once for a study.
Selecting seed signal.  For practical reasons, we usually can't examine the 

connectivity for every pairwise combination of voxels – visualizing the data would require a 
separate full brain statistical map for each voxel.  So studies using these methods usually test 
hypotheses concerning the connectivity of specific regions of interest, determined either 
anatomically (i.e., by delineating a structure of interest) or functionally (i.e., by delineating a 



region of activation from separate data).  The seed signal is typically an average of all the 
voxels in the region of interest, or sometimes a single voxel.

Creating correlation map.  Correlation maps are usually created in the obvious way, 
by calculating a product-moment correlation with the seed signal for each voxel in the brain.

Extensions to this method

Rogers et al. (2005) note that it's possible to examine these correlations iteratively -- 
for each of the connected regions identified, we may then examine that region's network of 
connected regions.  Hampson et al. (2002) have demonstrated that, given a blocked task 
performance dataset and a resting dataset, it's possible to go back and forth, using each 
dataset to generate hypotheses that may be tested in the other (e.g., regions activated in the 
performance data are hypothesized to be functionally connected in the resting data, and 
regions functionally connected are hypothesized to show a task-modulated connection in the 
performing data).  Many different such arrangements are possible, and it is obviously 
important to consider the analyses carefully before new data are collected.

While resting BOLD data are often available, data from activation studies are even 
more readily available (e.g., from the fMRIDC, fmridc.org).  Fair et al. 2007 have 
demonstrated that extracting rest-period data from blocked BOLD studies can be a viable 
substitute for pure resting BOLD data.  However, they also observe that data from event-
related paradigms cannot generally be used in place of resting data, because the 
contaminating effects of task activity are difficult to filter out.

The signal in one region may be best predicted by the past or future signal in another 
region, not just the time-locked signal.  Correlations at a temporal lag are potentially 
informative (if not decisively so) as to the causal direction of a functional connection.  That is, 
if BOLD signal in region A is best predicted by the past signal in region B, we may infer that 
the causal connection between the two is more likely to flow from B to A than the other way 
around.  Analyses of this type fall under the umbrella term “multivariate autoregressive 
models,” (Harrison et al., 2003) and include Granger causality mapping (Goebel et al., 2003; 
Roebroeck et al., 2005).

Sun et al. (2004) have proposed an alternative method in which instead of cross-
correlation, a measure of coherence is used instead.  Coherence, described as the spectral 
analog of cross-correlation, considers the similarity between the distribution of frequencies 
present in the two signals, irrespective of phase.  Because phase is ignored, the functional 
linkage between two regions may have an arbitrary temporal offset without affecting the 
coherence of the signals.  Coherence is generally a more inclusive measure than multivariate 
autoregressive models, and may encompass relationships it would be difficult to characterize 
intuitively.

Differences in functional connectivity between two psychological states can be 
identified by modeling each voxel's signal as a function of both the seed region signal and 
some other variable state, as well as the interaction between the two.  For example, we may 
observe that Wernicke's area and Broca's area are more highly correleated during a language 
task than during rest.  This is a form of psychophysical interaction (PPI) that can be 
informative (Rogers et al., 2007 give several examples), but must be interpreted with caution. 
A significant interaction may tell us that the influence of one voxel on the other is stronger 
during the task, or that the influence of the task on a voxel is influenced by activity in the other 
voxel.



Software, discussion groups, and data archives

The software components required to carry out functional connectivity analyses are 
widely available in fMRI packages.  At a minimum, the analyses would only require the ability 
to do typical preprocessing, frequency filtering, time series extraction, and multiple regression. 
Most if not all fMRI analysis packages can do all of these easily, so researchers tend to use 
the software with which they are already familiar.  More esoteric methods are less well 
supported, and tend to require some programming on the part of the investigator.  There are 
some resources specific to functional connectivity, which I list here.

A group at Washington University in St. Louis has pioneered the development of 
functional connectivity (e.g., Raichle et al., 2001; Fox et al., 2005), and they have been 
developing a web-based analysis/sharing platform called brainscape, which implements the 
methods described in their articles.  The web site promises not only to allow researchers to 
analyze their own data, but also provides a way for researchers to share resting BOLD data. 
It is currently in beta testing and is available at:

http://www.brainscape.org/
The SPM web site lists a large collection of extensions.  As of this writing, only one 

such package is described as being devoted to functional connectivity.  Developed by Xiao-
Wei Song, the REST toolkit provides several methods for examining functional connnectivity, 
and includes a graphical interface.  This package requires MATLAB, and may be downloaded 
from:

http://resting-fmri.sourceforge.net/
Note that many other methods that fall under the umbrella of functional connectivity are 

also available in various toolkits.  For a list of those associated with SPM (not all are SPM-
dependent or even MATLAB-dependent), see:

http://www.fil.ion.ucl.ac.uk/spm/ext/
The Neuroimaging Tools and Informatics Resources Clearinghouse (NITRC) is a 

relatively new NIH-sponsored entity that promises to unify the community of developers of 
imaging-related (and especially fMRI-related) tools.  The site currently hosts 93 projects, and 
is growing rapidly.  The front page is at:

http://www.nitrc.org/
NITRC also hosts a discussion group devoted to task-independent fluctuations:
http://www.nitrc.org/projects/fluctuations/
The fMRI Data Center (fMRIDC) is an ambitious site devoted to archiving data from 

published fMRI studies.  Submission to the fMRIDC was briefly required for several journals, 
which bolstered the contents of the archives, and it currently boasts 122 datasets.  As of this 
writing (July 2008), the archive is in transition to a new location and not accepting new 
submissions.  However, older datasets may apparently still be requested:

http://www.fmridc.org/
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